Test Review Part I-- turn in packet at end of class

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Use synthetic substitution to evaluate the polynomial $P(x) = x^3 - 4x^2 + 4x - 5$ for x = 4.

a. P(4) = -149

c. P(4) = -53

b. P(4) = 11

d. P(4) = 149

2. Determine whether the binomial (x-4) is a factor of the polynomial $P(x) = 5x^3 - 20x^2 - 5x + 20$.

a. Cannot determine.

- b. (x-4) is a factor of the polynomial $P(x) = 5x^3 20x^2 5x + 20$.
- c. (x-4) is not a factor of the polynomial $P(x) = 5x^3 20x^2 5x + 20$.
- 3. Computer graphics programs often employ a method called *cubic splines regression* to smooth hand-drawn curves. This method involves splitting a hand-drawn curve into regions that can be modeled by cubic polynomials. A region of a hand-drawn curve is modeled by the function $f(x) = -x^3 + 3x^2 4$. Use the graph of $f(x) = -x^3 + 3x^2 4$ to identify the values of x for which f(x) = 0 and to factor f(x).

- a. x = -1; x = 2; $f(x) = (x + 1)(x 2)^2$
- b. x = 1; x = -2; $f(x) = -(x-1)^2(x+2)$
- c. x = -1; x = 2; $f(x) = -(x+1)(x-2)^2$
- d. x = -1; x = 2; $f(x) = -(x+1)^2(x-2)$

- 4. Identify the leading coefficient, degree, and end behavior of the function $P(x) = -5x^4 6x^2 + 6$.
 - a. The leading coefficient is -5. The degree is 4. As $x \to -\infty$, $P(x) \to +6$ and as $x \to +\infty$, $P(x) \to +6$
 - b. The leading coefficient is -5. The degree is 6. As $x \to -\infty$, $P(x) \to -\infty$ and as $x \to +\infty$, $P(x) \to -\infty$
 - c. The leading coefficient is -5. The degree is 6. As $x \to -\infty$, $P(x) \to +6$ and as $x \to +\infty$, $P(x) \to +6$
 - d. The leading coefficient is -5. The degree is 4. As $x \to -\infty$, $P(x) \to -\infty$ and as $x \to +\infty$, $P(x) \to -\infty$
- 5. Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.

- a. The degree is even, and the leading coefficient is negative.
- b. The degree is odd, and the leading coefficient is negative.
- c. The degree is odd, and the leading coefficient is positive.
- d. The degree is even, and the leading coefficient is positive.

6. Graph the function $f(x) = x^3 + 3x^2 - 6x - 8$.

a.

c.

b.

d.

- 7. Simplify $\frac{2z^3 6z^2}{z^2 3z}$. Identify any z-values for which the expression is undefined.
 - a. $2z(z^2 3z)$; $z \ne 3$ or 0

c. 2z; no excluded values

b. $2z; z \neq 3 \text{ or } 0$

- d. 2z; $z \neq 3$
- 8. Simplify $\frac{10-x^2-3x}{x^2+2x-8}$. Identify any x-values for which the expression is undefined.
 - a. $\frac{-x-5}{x+4}$; The expression is undefined at x=-4.
 - b. $\frac{x+5}{x+4}$; The expression is undefined at x=-4.
 - c. $\frac{x+5}{x+4}$; The expression is undefined at x=2 and x=-4.
 - d. $\frac{-x-5}{x+4}$; The expression is undefined at x=2 and x=-4.

9. Multiply $\frac{8x^4y^2}{3z^3} \cdot \frac{9xy^2z^6}{4y^4}$. Assume that all expressions are defined.

c. $6x^5y^8z^9$

b. $\frac{3}{2}x^3y^2z$

d. $6x^4vz^2$

10. Solve $\frac{x^2 + x - 30}{x - 5} = 11$. Check your answer.

- b. There is no solution because the original equation is undefined at x = 5.
- d. x = 5

11. Subtract $\frac{-6x^2 + x - 3}{x^2 + 9} - \frac{-2x - 4}{x^2 + 9}$. Identify any x-values for which the expression is undefined.

- a. $\frac{-6x^2 x 7}{x^2 + 9}$; The expression is undefined at $x = \pm 3$.
- b. $\frac{-6x^2 x 7}{x^2 + 9}$; The expression is always defined.
- c. $\frac{-6x^2 + 3x + 1}{x^2 + 0}$; The expression is always defined.
- d. $\frac{-6x^2 + 3x + 1}{x^2 + 9}$; The expression is undefined at $x = \pm 3$.

12. Solve the equation $x - 9 = -\frac{18}{x}$.

a. x = 3 or x = 6

c. x = -3 or x = -6d. x = 3

b. x = 6

13. Solve the equation $\frac{6x}{x-3} = \frac{4x+6}{x-3}$.

a. $x = -\frac{3}{2}$

c. x = -3

b. x = 3

d. There is no solution.

Short Answer

Solve each equation using the information found in the graph.

1. The graph models the amount of money a company makes producing floral displays. What is the maximum number of floral displays that the company can create and make a profit? Where is this information located on the graph?

Number of Floral Displays Made

Problem Set

Write the zero that corresponds to each factor.

- 2. x + 5
 - 52
- 3. 10x 9

Write the factor that corresponds to each zero.

4.
$$x = \frac{2}{3}$$

Determine if the given factor is a factor of each polynomial. Explain your reasoning.

5. Is x - 1 a factor of $x^4 - 3x^3 + 6x^2 - 12x + 8$?

Problem Set

Determine each function value using the Remainder Theorem. Explain your reasoning.

6. Determine p(1) if $p(x) = x^4 + 3x^3 - 6x^2 - 8x$.

Simplify each rational expression. List any restrictions on the domain.

7.
$$\frac{x^2-1}{x-1}$$

8. $\frac{x^2 + x - 20}{x + 5}$

Calculate each sum and difference. Simplify the answer when possible.

9.
$$\frac{x+2}{4} - \frac{z}{10}$$

Multiply each expression. Describe any restriction(s) for the variables and simplify the answer when possible.

10.
$$\frac{1}{2x^2 + 3x - 2} \cdot \frac{x^2 - 2x - 8}{x - 4}$$

11.
$$\frac{5x^2}{x+4} \cdot \frac{3x^2+12x}{7x-7} \cdot \frac{x^2-2x+1}{3}$$